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Abstract. The access to Next Generation Sequencing data has raised
interest in the application and development of machine learning meth-
ods for antimicrobial resistance (AMR) prediction. The diversity of al-
gorithms as well as possible representations of the genome in terms of
different features leaves researchers with the issue of comparing new
methods to existing ones or choosing the appropriate method for their
data. To give them a helpful tool, we have developed BenchmarkDR
(https://github.com/WGS-TB/BenchmarkDR), a modular and easily ex-
tendable end-to-end pipeline to benchmark the prediction performance of
the variety of available methods. Currently, BenchmarkDR supports the
preprocessing of raw genomic sequencing input data into three different
representations and the training and evaluation of 16 binary classification
methods for categorical predictions and 8 regression methods for MIC
predictions. Its modular design makes it easily extendable with other
preprocessing approaches and prediction methods. We believe it repre-
sents a valuable addition to the AMR prediction toolkit and will provide
valuable insights into the methods’ relative strengths and weaknesses on
a variety of bacterial datasets.

Keywords: Benchmarking · Antimicrobial Resistance Prediction · Ma-
chine Learning.

1 Introduction

The increasing number of drug resistant (DR) bacteria is quickly becoming one
of the biggest threats in public health [19]. Leveraging machine learning (ML)
methods to predict drug resistance from Next Generation Sequencing (NGS)
data shows promising results [2, 16, 24] and could also help identify or confirm
resistance mechanisms when using interpretable methods [8].

The application of ML methods to NGS data requires preprocessing of the
raw data and allows different modelling approaches in terms of the extracted
features. Commonly used representations are K-mers [5, 14, 8], single nucleotide
polymorphisms (SNPs) [6, 24, 18] and genes [4, 18]. K-mers represent consecutive
substrings of nucleotides of length K occurring in the genome, while SNPs are
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point mutations where individual base-pairs differ with respect to a reference
genome. The combination of different representations with different ML methods
leads to a variety of approaches to the prediction problem, creating the need for
a systematic approach to compare them.

2 Results

To help shed light on the different ML approaches to DR prediction, we built
BenchmarkDR (https://github.com/WGS-TB/BenchmarkDR), an end-to-end
pipeline that enables the benchmarking of different prediction methods for classi-
fication (working with binary susceptible/resistant labels) and regression (work-
ing with minimum inhibitory concentration (MIC) values) by automatically cre-
ating the desired feature representations and training and evaluating a variety of
ML methods. It is implemented in Python 3 and based on the workflow manager
Snakemake v6.3 [12]. The pipeline is reproducible and can scale from a single
local machine to a large computational cluster. Due to its rule-based design,
where each step of the pipeline is defined as an individual rule with its own
input and output, it provides modularity and can be easily extended with other
preprocessing approaches or ML methods.

2.1 Workflow

BenchmarkDR’s workflow (Figure 1) is split into two major parts. Based on
an individual configuration, genome sequencing data is processed into different
feature representations. These representations are then used to train different
machine learning models, and evaluate their accuracy if true labels are available.

Fig. 1. Overview of BenchmarkDR’s workflow
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Input Data The input data required from the user can be split into three
categories: the genomic data (genotype), the drug resistance data (phenotype),
and the configuration (setting). The genotype must comprise paired-end short
reads of bacterial isolates in FASTQ format, which is a standard format for
NGS. Furthermore, an assembled reference genome in FASTA format is required.
Additionally, the drug resistance labels for the individual isolates, which are
either binary (0 = susceptible and 1 = resistant) or quantitative (the MIC),
have to be provided. The user also has to configure the pipeline according to
their needs, e.g. paths to the genotypes and phenotypes, the representations
and methods to be used, and the method parameters. Meaningful defaults are
available for all of these except the genotype and the phenotype paths.

Representations BenchmarkDR allows to train the machine learning models
on three different most common representations of the genomic data (genes, k-
mers, SNPs). For each bacterial isolate, a binary vector is created, representing
whether a certain feature, e.g. a gene, is present (1) or absent (0) in comparison
to the specified reference genome. The choice of tools used to create the repre-
sentations was based on benchmark papers, popularity, and ease of installation.
Once the representation for each isolate is determined, all the results are pooled
together in a table. The tools selected for each preprocessing will be explained
in the following.

Gene Presence Absence One representation relies on the presence or absence of
identified genes in each isolate. To assemble the fragmented DNA from the input
data into contiguous sequences, SPAdes v3.15.2 [3] is used. The choice was based
on the benchmarking results of Heydari et al. [9]. The ’–isolates’ flag is used if
the coverage-depth of the respective isolates is greater than 100. The coverage
depth is automatically determined based on the formula NL/G [22]. Here, L is
the read length and N the number of reads, both of which are obtained from the
FASTQ files, while G is the genome length, which is obtained from the reference
strain. Once the genomes are assembled, the genes are annotated by Prokka
v1.13.4 [21].

SNPs To determine the SNPs, the approach is similar to Yoshimura et al. [23].
In a first step, the reads are aligned using BWA version 0.1.17 [13], meaning
that their likely position within the genome based on the reference genome is
determined. In further processing, Samtools 1.12 [7] is used to correct errors
and to sort the alignments according to their position. Picard v2.25.6 [1] then
removes duplicates. Eventually, a pileup file, combining the data of the reference
genome and the sorted fragments, is created using Samtools, which is eventually
used by VarScan v2.4.4 [10] to determine the SNPs.

K-mers Based on the benchmark by Manekar et al. [17], KMC v3.1.2rc1 [11] is
the method of choice to count the K-mers in each isolate. In the consolidation
step where the aggregated table is created, the count is converted into a binary
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presence/absence representation. In contrast to the other representations, k-mers
have the advantage that they do not rely on a reference genome and require only
one rule within the pipeline to be determined.

Training and Evaluation of Machine Learning Methods

Machine Learning Methods The pipeline offers a variety of ML methods (Table
1) to be trained on the different representations to predict drug susceptibility.
A variety of standard models from Scikit-Learn v0.24 [20] are available, as well
as the inherently interpretable method INGOT-DR [24].

Table 1. Overview of ML methods currently available in BenchmarkDR; the ∗ marks
the methods for which the L1, L2, or Elastic Net penalty can be further selected.

Binary Classification Regression

Logistic Regression∗ Linear Regression∗

Support Vector Machine Classification Support Vector Machine Regression

Decision Trees Decision Tree Regressor

Random Forests Random Forest Regressor

Extremely Randomized Trees Gradient Boosted Trees Regressor

AdaBoost Decision Tree Classifier AdaBoost Decision Tree Regressor

Gradient Boosted Decision Trees

Stochastic Gradient Descent Classifier∗

K-Nearest Neighbours

Gaussian/ Complement Naive Bayes

INterpretable GrOup Testing for Drug Re-
sistance (INGOT-DR) [24]

A configuration file allows the user to choose the parameters for the meth-
ods. Furthermore, hyperparameter tuning can be conducted via grid search or
randomized search and cross-validation.

Output The pipeline’s output provides a range of performance metrics. In addi-
tion to measuring the training time needed by each method, it provides different
indicators to measure the prediction performance. For the binary classification
task, accuracy, balanced accuracy, F1-score, AUC, as well as sensitivity and
specificity are evaluated. For the regression task using MIC data, the metrics
of mean squared error, mean squared log error and coefficient of determination(
R2

)
are provided.

3 Conclusion & Future Work

With BenchmarkDR, we have built an end-to-end pipeline allowing a user-
friendly and systematic benchmarking of a variety of ML methods on different
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genomic representations. It eliminates tedious manual preprocessing and allows
to easily compare methods on the user’s own data. Nevertheless, already prepro-
cessed data can also be integrated. Furthermore, its modular design facilitates
the further addition of genomic representations and ML methods. These ad-
ditions, favourably driven by the developers of new methods themselves, will
increase the tool’s community value in the future.

The provision of a comprehensive dataset, already preprocessed into different
representations, will further improve the benchmarking aspect, and is a future
direction we plan to explore. Lastly, the pure benchmarking purpose of choosing
the best performing method can be expanded by adding explainability methods
for the available ML methods, e.g. SHAP [15], to further contribute to advancing
our knowledge about genetic drug resistance mechanisms in bacterial pathogens.
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